- ## Module statistics.py
- ##
- ## Copyright (c) 2013 Steven D'Aprano <steve+python@pearwood.info>.
- ##
- ## Licensed under the Apache License, Version 2.0 (the "License");
- ## you may not use this file except in compliance with the License.
- ## You may obtain a copy of the License at
- ##
- ## http://www.apache.org/licenses/LICENSE-2.0
- ##
- ## Unless required by applicable law or agreed to in writing, software
- ## distributed under the License is distributed on an "AS IS" BASIS,
- ## WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- ## See the License for the specific language governing permissions and
- ## limitations under the License.
- """
- Basic statistics module.
- This module provides functions for calculating statistics of data, including
- averages, variance, and standard deviation.
- Calculating averages
- --------------------
- ================== =============================================
- Function Description
- ================== =============================================
- mean Arithmetic mean (average) of data.
- median Median (middle value) of data.
- median_low Low median of data.
- median_high High median of data.
- median_grouped Median, or 50th percentile, of grouped data.
- mode Mode (most common value) of data.
- ================== =============================================
- Calculate the arithmetic mean ("the average") of data:
- >>> mean([-1.0, 2.5, 3.25, 5.75])
- 2.625
- Calculate the standard median of discrete data:
- >>> median([2, 3, 4, 5])
- 3.5
- Calculate the median, or 50th percentile, of data grouped into class intervals
- centred on the data values provided. E.g. if your data points are rounded to
- the nearest whole number:
- >>> median_grouped([2, 2, 3, 3, 3, 4]) #doctest: +ELLIPSIS
- 2.8333333333...
- This should be interpreted in this way: you have two data points in the class
- interval 1.5-2.5, three data points in the class interval 2.5-3.5, and one in
- the class interval 3.5-4.5. The median of these data points is 2.8333...
- Calculating variability or spread
- ---------------------------------
- ================== =============================================
- Function Description
- ================== =============================================
- pvariance Population variance of data.
- variance Sample variance of data.
- pstdev Population standard deviation of data.
- stdev Sample standard deviation of data.
- ================== =============================================
- Calculate the standard deviation of sample data:
- >>> stdev([2.5, 3.25, 5.5, 11.25, 11.75]) #doctest: +ELLIPSIS
- 4.38961843444...
- If you have previously calculated the mean, you can pass it as the optional
- second argument to the four "spread" functions to avoid recalculating it:
- >>> data = [1, 2, 2, 4, 4, 4, 5, 6]
- >>> mu = mean(data)
- >>> pvariance(data, mu)
- 2.5
- Exceptions
- ----------
- A single exception is defined: StatisticsError is a subclass of ValueError.
- """
- __all__ = [ 'StatisticsError',
- 'pstdev', 'pvariance', 'stdev', 'variance',
- 'median', 'median_low', 'median_high', 'median_grouped',
- 'mean', 'mode',
- ]
- import collections
- import math
- from fractions import Fraction
- from decimal import Decimal
- # === Exceptions ===
- class StatisticsError(ValueError):
- pass
- # === Private utilities ===
- def _sum(data, start=0):
- """_sum(data [, start]) -> value
- Return a high-precision sum of the given numeric data. If optional
- argument ``start`` is given, it is added to the total. If ``data`` is
- empty, ``start`` (defaulting to 0) is returned.
- Examples
- --------
- >>> _sum([3, 2.25, 4.5, -0.5, 1.0], 0.75)
- 11.0
- Some sources of round-off error will be avoided:
- >>> _sum([1e50, 1, -1e50] * 1000) # Built-in sum returns zero.
- 1000.0
- Fractions and Decimals are also supported:
- >>> from fractions import Fraction as F
- >>> _sum([F(2, 3), F(7, 5), F(1, 4), F(5, 6)])
- Fraction(63, 20)
- >>> from decimal import Decimal as D
- >>> data = [D("0.1375"), D("0.2108"), D("0.3061"), D("0.0419")]
- >>> _sum(data)
- Decimal('0.6963')
- Mixed types are currently treated as an error, except that int is
- allowed.
- """
- # We fail as soon as we reach a value that is not an int or the type of
- # the first value which is not an int. E.g. _sum([int, int, float, int])
- # is okay, but sum([int, int, float, Fraction]) is not.
- allowed_types = set([int, type(start)])
- n, d = _exact_ratio(start)
- partials = {d: n} # map {denominator: sum of numerators}
- # Micro-optimizations.
- exact_ratio = _exact_ratio
- partials_get = partials.get
- # Add numerators for each denominator.
- for x in data:
- _check_type(type(x), allowed_types)
- n, d = exact_ratio(x)
- partials[d] = partials_get(d, 0) + n
- # Find the expected result type. If allowed_types has only one item, it
- # will be int; if it has two, use the one which isn't int.
- assert len(allowed_types) in (1, 2)
- if len(allowed_types) == 1:
- assert allowed_types.pop() is int
- T = int
- else:
- T = (allowed_types - set([int])).pop()
- if None in partials:
- assert issubclass(T, (float, Decimal))
- assert not math.isfinite(partials[None])
- return T(partials[None])
- total = Fraction()
- for d, n in sorted(partials.items()):
- total += Fraction(n, d)
- if issubclass(T, int):
- assert total.denominator == 1
- return T(total.numerator)
- if issubclass(T, Decimal):
- return T(total.numerator)/total.denominator
- return T(total)
- def _check_type(T, allowed):
- if T not in allowed:
- if len(allowed) == 1:
- allowed.add(T)
- else:
- types = ', '.join([t.__name__ for t in allowed] + [T.__name__])
- raise TypeError("unsupported mixed types: %s" % types)
- def _exact_ratio(x):
- """Convert Real number x exactly to (numerator, denominator) pair.
- >>> _exact_ratio(0.25)
- (1, 4)
- x is expected to be an int, Fraction, Decimal or float.
- """
- try:
- try:
- # int, Fraction
- return (x.numerator, x.denominator)
- except AttributeError:
- # float
- try:
- return x.as_integer_ratio()
- except AttributeError:
- # Decimal
- try:
- return _decimal_to_ratio(x)
- except AttributeError:
- msg = "can't convert type '{}' to numerator/denominator"
- raise TypeError(msg.format(type(x).__name__)) from None
- except (OverflowError, ValueError):
- # INF or NAN
- if __debug__:
- # Decimal signalling NANs cannot be converted to float :-(
- if isinstance(x, Decimal):
- assert not x.is_finite()
- else:
- assert not math.isfinite(x)
- return (x, None)
- # FIXME This is faster than Fraction.from_decimal, but still too slow.
- def _decimal_to_ratio(d):
- """Convert Decimal d to exact integer ratio (numerator, denominator).
- >>> from decimal import Decimal
- >>> _decimal_to_ratio(Decimal("2.6"))
- (26, 10)
- """
- sign, digits, exp = d.as_tuple()
- if exp in ('F', 'n', 'N'): # INF, NAN, sNAN
- assert not d.is_finite()
- raise ValueError
- num = 0
- for digit in digits:
- num = num*10 + digit
- if exp < 0:
- den = 10**-exp
- else:
- num *= 10**exp
- den = 1
- if sign:
- num = -num
- return (num, den)
- def _counts(data):
- # Generate a table of sorted (value, frequency) pairs.
- table = collections.Counter(iter(data)).most_common()
- if not table:
- return table
- # Extract the values with the highest frequency.
- maxfreq = table[0][1]
- for i in range(1, len(table)):
- if table[i][1] != maxfreq:
- table = table[:i]
- break
- return table
- # === Measures of central tendency (averages) ===
- def mean(data):
- """Return the sample arithmetic mean of data.
- >>> mean([1, 2, 3, 4, 4])
- 2.8
- >>> from fractions import Fraction as F
- >>> mean([F(3, 7), F(1, 21), F(5, 3), F(1, 3)])
- Fraction(13, 21)
- >>> from decimal import Decimal as D
- >>> mean([D("0.5"), D("0.75"), D("0.625"), D("0.375")])
- Decimal('0.5625')
- If ``data`` is empty, StatisticsError will be raised.
- """
- if iter(data) is data:
- data = list(data)
- n = len(data)
- if n < 1:
- raise StatisticsError('mean requires at least one data point')
- return _sum(data)/n
- # FIXME: investigate ways to calculate medians without sorting? Quickselect?
- def median(data):
- """Return the median (middle value) of numeric data.
- When the number of data points is odd, return the middle data point.
- When the number of data points is even, the median is interpolated by
- taking the average of the two middle values:
- >>> median([1, 3, 5])
- 3
- >>> median([1, 3, 5, 7])
- 4.0
- """
- data = sorted(data)
- n = len(data)
- if n == 0:
- raise StatisticsError("no median for empty data")
- if n%2 == 1:
- return data[n//2]
- else:
- i = n//2
- return (data[i - 1] + data[i])/2
- def median_low(data):
- """Return the low median of numeric data.
- When the number of data points is odd, the middle value is returned.
- When it is even, the smaller of the two middle values is returned.
- >>> median_low([1, 3, 5])
- 3
- >>> median_low([1, 3, 5, 7])
- 3
- """
- data = sorted(data)
- n = len(data)
- if n == 0:
- raise StatisticsError("no median for empty data")
- if n%2 == 1:
- return data[n//2]
- else:
- return data[n//2 - 1]
- def median_high(data):
- """Return the high median of data.
- When the number of data points is odd, the middle value is returned.
- When it is even, the larger of the two middle values is returned.
- >>> median_high([1, 3, 5])
- 3
- >>> median_high([1, 3, 5, 7])
- 5
- """
- data = sorted(data)
- n = len(data)
- if n == 0:
- raise StatisticsError("no median for empty data")
- return data[n//2]
- def median_grouped(data, interval=1):
- """"Return the 50th percentile (median) of grouped continuous data.
- >>> median_grouped([1, 2, 2, 3, 4, 4, 4, 4, 4, 5])
- 3.7
- >>> median_grouped([52, 52, 53, 54])
- 52.5
- This calculates the median as the 50th percentile, and should be
- used when your data is continuous and grouped. In the above example,
- the values 1, 2, 3, etc. actually represent the midpoint of classes
- 0.5-1.5, 1.5-2.5, 2.5-3.5, etc. The middle value falls somewhere in
- class 3.5-4.5, and interpolation is used to estimate it.
- Optional argument ``interval`` represents the class interval, and
- defaults to 1. Changing the class interval naturally will change the
- interpolated 50th percentile value:
- >>> median_grouped([1, 3, 3, 5, 7], interval=1)
- 3.25
- >>> median_grouped([1, 3, 3, 5, 7], interval=2)
- 3.5
- This function does not check whether the data points are at least
- ``interval`` apart.
- """
- data = sorted(data)
- n = len(data)
- if n == 0:
- raise StatisticsError("no median for empty data")
- elif n == 1:
- return data[0]
- # Find the value at the midpoint. Remember this corresponds to the
- # centre of the class interval.
- x = data[n//2]
- for obj in (x, interval):
- if isinstance(obj, (str, bytes)):
- raise TypeError('expected number but got %r' % obj)
- try:
- L = x - interval/2 # The lower limit of the median interval.
- except TypeError:
- # Mixed type. For now we just coerce to float.
- L = float(x) - float(interval)/2
- cf = data.index(x) # Number of values below the median interval.
- # FIXME The following line could be more efficient for big lists.
- f = data.count(x) # Number of data points in the median interval.
- return L + interval*(n/2 - cf)/f
- def mode(data):
- """Return the most common data point from discrete or nominal data.
- ``mode`` assumes discrete data, and returns a single value. This is the
- standard treatment of the mode as commonly taught in schools:
- >>> mode([1, 1, 2, 3, 3, 3, 3, 4])
- 3
- This also works with nominal (non-numeric) data:
- >>> mode(["red", "blue", "blue", "red", "green", "red", "red"])
- 'red'
- If there is not exactly one most common value, ``mode`` will raise
- StatisticsError.
- """
- # Generate a table of sorted (value, frequency) pairs.
- table = _counts(data)
- if len(table) == 1:
- return table[0][0]
- elif table:
- raise StatisticsError(
- 'no unique mode; found %d equally common values' % len(table)
- )
- else:
- raise StatisticsError('no mode for empty data')
- # === Measures of spread ===
- # See http://mathworld.wolfram.com/Variance.html
- # http://mathworld.wolfram.com/SampleVariance.html
- # http://en.wikipedia.org/wiki/Algorithms_for_calculating_variance
- #
- # Under no circumstances use the so-called "computational formula for
- # variance", as that is only suitable for hand calculations with a small
- # amount of low-precision data. It has terrible numeric properties.
- #
- # See a comparison of three computational methods here:
- # http://www.johndcook.com/blog/2008/09/26/comparing-three-methods-of-computing-standard-deviation/
- def _ss(data, c=None):
- """Return sum of square deviations of sequence data.
- If ``c`` is None, the mean is calculated in one pass, and the deviations
- from the mean are calculated in a second pass. Otherwise, deviations are
- calculated from ``c`` as given. Use the second case with care, as it can
- lead to garbage results.
- """
- if c is None:
- c = mean(data)
- ss = _sum((x-c)**2 for x in data)
- # The following sum should mathematically equal zero, but due to rounding
- # error may not.
- ss -= _sum((x-c) for x in data)**2/len(data)
- assert not ss < 0, 'negative sum of square deviations: %f' % ss
- return ss
- def variance(data, xbar=None):
- """Return the sample variance of data.
- data should be an iterable of Real-valued numbers, with at least two
- values. The optional argument xbar, if given, should be the mean of
- the data. If it is missing or None, the mean is automatically calculated.
- Use this function when your data is a sample from a population. To
- calculate the variance from the entire population, see ``pvariance``.
- Examples:
- >>> data = [2.75, 1.75, 1.25, 0.25, 0.5, 1.25, 3.5]
- >>> variance(data)
- 1.3720238095238095
- If you have already calculated the mean of your data, you can pass it as
- the optional second argument ``xbar`` to avoid recalculating it:
- >>> m = mean(data)
- >>> variance(data, m)
- 1.3720238095238095
- This function does not check that ``xbar`` is actually the mean of
- ``data``. Giving arbitrary values for ``xbar`` may lead to invalid or
- impossible results.
- Decimals and Fractions are supported:
- >>> from decimal import Decimal as D
- >>> variance([D("27.5"), D("30.25"), D("30.25"), D("34.5"), D("41.75")])
- Decimal('31.01875')
- >>> from fractions import Fraction as F
- >>> variance([F(1, 6), F(1, 2), F(5, 3)])
- Fraction(67, 108)
- """
- if iter(data) is data:
- data = list(data)
- n = len(data)
- if n < 2:
- raise StatisticsError('variance requires at least two data points')
- ss = _ss(data, xbar)
- return ss/(n-1)
- def pvariance(data, mu=None):
- """Return the population variance of ``data``.
- data should be an iterable of Real-valued numbers, with at least one
- value. The optional argument mu, if given, should be the mean of
- the data. If it is missing or None, the mean is automatically calculated.
- Use this function to calculate the variance from the entire population.
- To estimate the variance from a sample, the ``variance`` function is
- usually a better choice.
- Examples:
- >>> data = [0.0, 0.25, 0.25, 1.25, 1.5, 1.75, 2.75, 3.25]
- >>> pvariance(data)
- 1.25
- If you have already calculated the mean of the data, you can pass it as
- the optional second argument to avoid recalculating it:
- >>> mu = mean(data)
- >>> pvariance(data, mu)
- 1.25
- This function does not check that ``mu`` is actually the mean of ``data``.
- Giving arbitrary values for ``mu`` may lead to invalid or impossible
- results.
- Decimals and Fractions are supported:
- >>> from decimal import Decimal as D
- >>> pvariance([D("27.5"), D("30.25"), D("30.25"), D("34.5"), D("41.75")])
- Decimal('24.815')
- >>> from fractions import Fraction as F
- >>> pvariance([F(1, 4), F(5, 4), F(1, 2)])
- Fraction(13, 72)
- """
- if iter(data) is data:
- data = list(data)
- n = len(data)
- if n < 1:
- raise StatisticsError('pvariance requires at least one data point')
- ss = _ss(data, mu)
- return ss/n
- def stdev(data, xbar=None):
- """Return the square root of the sample variance.
- See ``variance`` for arguments and other details.
- >>> stdev([1.5, 2.5, 2.5, 2.75, 3.25, 4.75])
- 1.0810874155219827
- """
- var = variance(data, xbar)
- try:
- return var.sqrt()
- except AttributeError:
- return math.sqrt(var)
- def pstdev(data, mu=None):
- """Return the square root of the population variance.
- See ``pvariance`` for arguments and other details.
- >>> pstdev([1.5, 2.5, 2.5, 2.75, 3.25, 4.75])
- 0.986893273527251
- """
- var = pvariance(data, mu)
- try:
- return var.sqrt()
- except AttributeError:
- return math.sqrt(var)
|